Numerical Algorithms for Forward-Backward Stochastic Differential Equations
نویسندگان
چکیده
Efficient numerical algorithms are proposed for a class of forward-backward stochastic differential equations (FBSDEs) connected with semilinear parabolic partial differential equations. As in [J. Douglas, Jr., J. Ma, and P. Protter, Ann. Appl. Probab., 6 (1996), pp. 940–968], the algorithms are based on the known four-step scheme for solving FBSDEs. The corresponding semilinear parabolic equation is solved by layer methods which are constructed by means of a probabilistic approach. The derivatives of the solution u of the semilinear equation are found by finite differences. The forward equation is simulated by mean-square methods of order 1/2 and 1. Corresponding convergence theorems are proved. Along with the algorithms for FBSDEs on a fixed finite time interval, we also construct algorithms for FBSDEs with random terminal time. The results obtained are supported by numerical experiments.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملSimulating Stochastic Inertial Manifolds by a Backward-Forward Approach
A numerical approach for the approximation of inertial manifolds of stochastic evolutionary equations with multiplicative noise is presented and illustrated. After splitting the stochastic evolutionary equations into a backward and a forward part, a numerical scheme is devised for solving this backward-forward stochastic system, and an ensemble of graphs representing the inertial manifold is co...
متن کاملMalliavin Calculus for Backward Stochastic Differential Equations and Application to Numerical Solutions
In this paper we study backward stochastic differential equations with general terminal value and general random generator. In particular, we do not require the terminal value be given by a forward diffusion equation. The randomness of the generator does not need to be from a forward equation, either. Motivated from applications to numerical simulations, first we obtain the Lp-Hölder continuity...
متن کاملNumerical Solutions for Forward Backward Doubly Stochastic Differential Equations and Zakai Equations
NUMERICAL SOLUTIONS FOR FORWARD BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS AND ZAKAI EQUATIONS Feng Bao, Yanzhao Cao, & Weidong Zhao Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 School of Mathematics, Sun Yat Sun University, China School of Mathematics, Shangdong University, Jinan, China Original Manuscript Submitted: 05/22/2011; Final Draft Received: 08/...
متن کاملNumerical Algorithms for 1-d Backward Stochastic Differential Equations: Convergence and Simulations∗
In this paper we study different algorithms for backward stochastic differential equations (BSDE in short) basing on random walk framework for 1-dimensional Brownian motion. Implicit and explicit schemes for both BSDE and reflected BSDE are introduced. Then we prove the convergence of different algorithms and present simulation results for different types of BSDEs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2006